Table 4. Selected least-squares planes of molecules (I) and (II)
E.s.d.'s of the interplanar angles $=0 \cdot 1^{\circ} \cdot x^{2}=\Sigma(\Delta / \sigma)^{2}$.

Molecule	Plane	Atoms included in plane	χ^{2}		Interplanar angles				
					1	2	,	4	5
(I)	1	$\mathrm{C}, \mathrm{Cl}, \mathrm{Ol}, \mathrm{Nl}, \mathrm{C} 3, \mathrm{C}, \mathrm{O} 2, \mathrm{O} 3$	41591	1	0				
(1)	2	$\mathrm{C3}^{\text {3, } 44, \mathrm{Cs}, \mathrm{C6}, \mathrm{C} 7, \mathrm{C} 8}$	11	2	97.6	0			
(I)	3	C9, $\mathrm{Cl0}, \mathrm{Cl1}, \mathrm{Cl2}, \mathrm{C13}, \mathrm{C14}$	99	3	107.1	26.9	0		
(II)	4	$\mathrm{Ol}, \mathrm{C} 9, \mathrm{Cl}, \mathrm{N}, \mathrm{C} 3, \mathrm{C} 2, \mathrm{O2}, \mathrm{O3}, \mathrm{Cl0}, \mathrm{Cl} 3$	2730	4	-	-			
(II)	5	C3, C4, C5, C6, C7, C8	22	5	-	-	-	88.8	

This work was originally proposed by the late Dr Karel Bláha, Institute of Organic Chemistry and Biochemistry, Prague. The authors thank Dr Karel Huml from the Institute of Macromolecular Chemistry in Prague for kindly providing the experimental and computational equipment of his X-ray laboratory.

References

Albright, J. D. \& Moran, D. B. (1986). J. Heterocycl. Chem. 23, 913.

Benedetti, E., di Blasio, B., Pavone, V., Pedone, C., Tonilo, C. \& Bonora, G. M. (1981). Biopolymers, 20, 1635.

Benedetti, E., Ciajolo, M. R. \& Maisto, A. (1974). Acta Cryst. B30, 1783-1788.
Brown, C. J. \& Corbridge, D. E. C. (1954). Acta Cryst. 7, 711-715.
Cambridge Structural Database (1988). Univ. Chemical Laboratory, Lensfield Road, Cambridge, England.
Debaerdemaeker, T., Germain, G., Main, P., Tate, C. \& Woolfson, M. M. (1987). MULTAN87. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. of York, England.

Grehn, L., Gunnarsson, K. \& Ragnarsson, U. (1985). J. Chem. Soc. Chem. Commun. pp. 1317-1318.
Grehn, L., Gunnarsson, K. \& Ragnarsson, U. (1986). Acta Chem. Scand. B, 40, 745-750.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Kashino, S., Ito, K. \& Haisa, M. (1979). Bull. Chem. Soc. Jpn, 52, 365-369.
Langer, V. (1973). INTER. UMCH-111. Institute of Macromolecular Chemistry, Prague, Czechoslovakia.
MALOŇ, P. (1988). PMODEL. Program for interactive molecular graphics. Institute of Organic Chemistry and Biochemistry, Prague, Czechoslovakia.
Nardelli, M. (1983). PARST83. A System of Computer Routines for Calculating Molecular Parameters from the Results of Crystal Structure Analysis. Univ. of Parma, Italy.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Warshel, A., Levitt, M. \& Lifson, S. (1970). J. Mol. Spectrosc. 33, 84-89.
Winkler, F. K. \& Dunitz, J. D. (1971). J. Mol. Biol. 59, 169-182.
Wyss, H., Brisse, F. \& Hanessian, S. (1984). Acta Cryst. C40, 1894-1897.

Acta Cryst. (1990). C46, 686-688

Topochemical Studies. XII.* Structure of a Cinnamamide-Cinnamic Acid (1/1) Complex

By Tetsuyuki Iwamoto \dagger and Setsuo Kashino \ddagger
Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700, Japan

(Received 10 July 1989; accepted 14 August 1989)

Abstract

C}_{9} \mathrm{H}_{9} \mathrm{NO} . \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2}, \quad M_{r}=295 \cdot 24\), m.p. 377-379 K, monoclinic, $P 2_{1} / a, a=40 \cdot 183$ (3), $b=$ 9.5084 (6), $\quad c=4.0569$ (5) $\AA, \quad \beta=97.540(9)^{\circ}, \quad V=$ $1536.6(2) \AA^{3}, \quad Z=4, \quad D_{m}=1 \cdot 28(1), \quad D_{x}=$ $1.277 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.5418 \AA, \quad \mu=$ $0.72 \mathrm{~mm}^{-1}, F(000)=624, T=295 \mathrm{~K}, R=0.058$ for 2454 unique reflections. The molecules of

^[* Part XI: Iwamoto, Kashino \& Haisa (1989b). \dagger On leave from Kobe Women's University Seto Junior College, Seto, Akaiwa, Okayama 709-08, Japan. \ddagger To whom correspondence should be addressed.]

0108-2701/90/040686-03\$03.00
cinnamamide (A) and cinnamic acid (B) are held together by two kinds of hydrogen bonds between the amide group and carboxyl group to form a dimer. The nearest $\mathrm{C}=\mathrm{C}$ bonds are related by a c translation with a C \cdots C distance of 4.057 (4) \AA for both (A) and (B), the spacings between the planes through four C atoms involving the $\mathrm{C}=\mathrm{C}$ bonds being 3.435 (4) \AA for (A) and 3.394 (4) \AA for (B). This fact suggests the possibility of the formation of β-type photodimers of (A) and (B) by topochemical reaction.
© 1990 International Union of Crystallography

Table 1. Final atomic coordinates and equivalent isotropic thermal parameters (\AA^{2}) with e.s.d.'s in parentheses

	$B_{\text {eq }}=\frac{4}{3} \sum_{i} \beta_{i i} / a_{i i}{ }^{* 2}$.			
	x	y	z	$B_{\text {eq }}$
$\mathrm{O}(1 A)$	$0 \cdot 24599$ (2)	0.2359 (1)	0.2466 (3)	5.05 (5)
$\mathrm{O}(1 B)$	$0 \cdot 18905$ (2)	$0 \cdot 1871$ (1)	0.4584 (4)	$5 \cdot 84$ (6)
$\mathrm{O}(2 B)$	0.17088 (3)	$0 \cdot 3985$ (1)	0.2838 (4)	6.45 (7)
$\mathrm{N}(1 A)$	0.23623 (3)	0.4592 (1)	0.0778 (5)	$5 \cdot 95$ (8)
$\mathrm{C}(1 A)$	$0 \cdot 34879$ (3)	0.2689 (1)	0.0824 (4)	$3 \cdot 51$ (6)
$\mathrm{C}(2 A)$	$0 \cdot 36260$ (4)	0.3787 (2)	-0.0832 (4)	4.03 (7)
$\mathrm{C}(3 A)$	$0 \cdot 39605$ (4)	0.3775 (2)	-0.1253 (4)	4.68 (8)
$\mathrm{C}(4 A)$	0.41639 (4)	$0 \cdot 2675$ (2)	-0.0043 (4)	$4 \cdot 65$ (7)
$\mathrm{C}(5 A)$	0.40315 (4)	$0 \cdot 1584$ (2)	0.1578 (4)	$4 \cdot 65$ (8)
$\mathrm{C}(6 \mathrm{~A})$	0.36971 (4)	0.1581 (2)	$0 \cdot 1995$ (4)	$4 \cdot 20$ (7)
$\mathrm{C}(7 A)$	0.31366 (4)	0.2663 (1)	$0 \cdot 1395$ (4)	3.91 (7)
$\mathrm{C}(8 A)$	0.29055 (4)	0.3626 (2)	0.0527 (5)	4.39 (8)
$\mathrm{C}(9 A)$	0.25596 (4)	0.3475 (1)	0.1308 (4)	4.27 (7)
$\mathrm{C}(18)$	0.07115 (4)	0.2804 (1)	0.4512 (4)	3.75 (6)
$\mathrm{C}(2 \mathrm{~B})$	0.06336 (4)	$0 \cdot 1621$ (2)	0.6293 (4)	$4 \cdot 30$ (7)
$\mathrm{C}(3 \mathrm{~B})$	0.03048 (4)	0.1315 (2)	0.6681 (5)	$5 \cdot 31$ (9)
$\mathrm{C}(4 B)$	0.00497 (4)	0.2185 (2)	0.5319 (5)	$5 \cdot 57$ (9)
$\mathrm{C}(5 \mathrm{~B})$	0.01211 (4)	$0 \cdot 3366$ (2)	0.3587 (5)	$5 \cdot 28$ (9)
C (6B)	0.04474 (4)	0.3678 (2)	0.3191 (4)	4.57 (8)
$\mathrm{C}(7 \mathrm{~B})$	0.10549 (4)	$0 \cdot 3144$ (1)	0.3957 (4)	3.96 (7)
$\mathrm{C}(8 \mathrm{~B})$	0.13303 (4)	0.2407 (2)	0.4896 (4)	$4 \cdot 29$ (7)
$\mathrm{C}(9 \mathrm{~B})$	0.16576 (4)	$0 \cdot 2849$ (2)	$0 \cdot 4008$ (4)	$4 \cdot 32$ (7)

Introduction. Sarma \& Desiraju (1985) have recently examined the crystal structure of a donor-acceptor complex of 3,4-dimethoxycinnamic acid and 2,4-dinitrocinnamic acid, and observed no photochemical reaction though the geometrical conditions permit $i t$. On the other hand, a $1 / 1$ complex of formic acid and formamide has been reported by Nahringbauer \& Larsson (1969). In view of the crystal engineering of photoreactive crystals, we have attempted to form a hydrogen-bonded complex of cinnamamide and cinnamic acid which are similar in molecular shape and size, and examined the crystal structure.

Experimental. Crystals of the complex grown from an ethanol solution by slow evaporation. D_{m} measured by flotation in aqueous KI. A colourless plate developed $\{100\} ; 0.05 \times 0.25 \times 0.22 \mathrm{~mm}$. Systematic absences $h 0 l$ for h odd, $0 k 0$ for k odd. Rigaku AFC- 5 four-circle diffractometer equipped with rotating anode (Ni-filtered $\mathrm{Cu} K \alpha$, at $40 \mathrm{kV}, 200 \mathrm{~mA}$). The lattice parameters determined with 20 reflections within $18<2 \theta<41^{\circ}$. Intensity data collected within $2 \theta_{\text {max }}=125^{\circ}(-45 \leq h \leq 45,0 \leq k \leq 10,0 \leq l \leq 4)$, $\omega-2 \theta$ scan method [scan speed $6^{\circ} \min ^{-1}$ in ω, scan range $\left.(1.2+0.15 \tan \theta)^{\circ}\right]$, background measured for 4 s on either side of the peak; three standard reflections recorded every 97 reflections, fluctuations within 1%. Lorentz and polarization corrections; no absorption correction. 2454 reflections measured. 2196 unique reflections with $\left|F_{o}\right|>\sigma\left(\left|F_{o}\right|\right), R_{\text {int }}=$ 0.014 for $386 h k 0$ reflections. All reflections used in structure analysis. Structure solved by MULTAN78

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

	Cinnamamide (A)	Cinnamic acid (B)
$\mathrm{O}(1)-\mathrm{C}(9)$	$1 \cdot 248$ (2)	$1 \cdot 318$ (2)
$\mathrm{O}(2)-\mathrm{C}(9)$		$1 \cdot 208$ (3)
$\mathrm{N}(1)-\mathrm{C}(9)$	1.326 (3)	
$\mathrm{C}(1)-\mathrm{C}(2)$	1.395 (3)	1.395 (3)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.392 (3)	1.398 (3)
$\mathrm{C}(1)-\mathrm{C}(7)$	1.460 (3)	1.463 (3)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.377 (3)	1.382 (3)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.378 (3)	1.375 (3)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.372 (3)	1.375 (3)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.376 (3)	1.374 (3)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.319 (3)	1.323 (3)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.473 (3)	1.470 (3)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{O}(2)$		123•1 (2)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{N}(1)$	121.8 (2)	
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	121.5 (2)	$113 \cdot 1$ (2)
$\mathrm{O}(2)-\mathrm{C}(9)-\mathrm{C}(8)$		$123 \cdot 8$ (2)
$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	116.6 (2)	
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	120.7 (2)	$120 \cdot 8$ (2)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$120 \cdot 8$ (2)	121.0 (2)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	127.4 (2)	$127 \cdot 5$ (2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$120 \cdot 3$ (2)	120.1 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	118.0 (2)	117.9 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	122.9 (2)	122.6 (2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.7 (2)	120.1 (2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.4 (2)	$120 \cdot 2$ (2)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	119.1 (2)	119.6 (2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	121.8 (2)	$121 \cdot 3$ (2)

and refined by block-diagonal least-squares method (non-H atoms anisotropically). H atoms determined from a difference Fourier map and refined isotropically; $\quad \sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ minimized with $w=1.0 /$ $\left[\sigma\left(F_{o}\right)^{2}-0.0684\left|F_{o}\right|+0.0039\left|F_{o}\right|^{2}\right]$ for $\left|F_{o}\right|>0, w$ $=1.3696$ for $\left|F_{o}\right|=0$. Final $R=0.058$ for 2454 reflections, $w R=0.049, S=1.4160 .(\Delta / \sigma)_{\max }=0.07$ for non- H and 0.58 for H atoms. The residual electron density in the final difference map was within $\pm 0.15 \mathrm{e}^{\AA^{-3}}$. Atomic scattering factors from International Tables for X-ray Crystallography (1974). Programs: MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978), HBLS-V and DAPH (Ashida, 1973), MOLCON (Fujii, 1979) and ORTEP (Johnson, 1971). Computations carried out at the Research Center for Protein Engineering, Institute for Protein Research, Osaka University, and at the Okayama University Computer Center.

Discussion. The final atomic parameters are listed in Table 1.* The thermal ellipsoids of the molecules are shown in Fig. 1 with the atomic numbering. Bond lengths and bond angles are listed in Table 2. A stereoscopic view of the crystal structure is shown in Fig. 2.

[^1]In the molecules of (A) and (B), the bond angles $\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$ are widened by an intramolecular repulsion of $\mathrm{C}(2) \cdots \mathrm{C}(8) \quad[3 \cdot 021(3) \AA$ in (A); $3 \cdot 022(3) \AA$ in $(B)]$ and the lengths of $\mathrm{C}(7)=\mathrm{C}(8)$ bonds are typical for cinnamic acids (Iwamoto, Kashino \& Haisa, 1989b). The molecules are nearly planar; in (A) the torsion angles $\mathrm{C}(2)-\mathrm{C}(1)-$ $\mathrm{C}(7)-\mathrm{C}(8), \quad \mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ and $\mathrm{C}(7)-$ $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)$ are $-0.9(3),-179.1(2)$ and $-8.7(3)^{\circ}$, respectively. The corresponding values for (B) are $2.4(3), 176.9(2)$ and $11.4(3)^{\circ}$, respectively.
In the crystals the molecules of (A) and (B) are held together by hydrogen bonds $\mathrm{N}(1 A)$ $\mathrm{H}(\mathrm{N} 1 A) \cdots \mathrm{O}(2 B)[\mathrm{N} \cdots \mathrm{O} 2.916$ (3), $\mathrm{H} \cdots \mathrm{O} 2.01$ (2) \AA, $\left.\mathrm{N}-\mathrm{H} \cdots \mathrm{O} \quad 166(2)^{\circ}\right]$ and $\mathrm{O}(1 B)-\mathrm{H}(\mathrm{O} 1 B) \cdots \mathrm{O}(1 A)$ $\left[\mathrm{O} \cdots \mathrm{O} 2.589\right.$ (1), $\mathrm{H} \cdots \mathrm{O} 1.57$ (2) \AA, O-H $\cdots \mathrm{O} 173$ (2) ${ }^{\circ}$] to form a dimer between the amide group and carboxyl group. The dimers related by a twofold screw axis are held together by the other hydrogen bond between the amide groups to form a ribbon $\left\{\mathrm{N}(1 A)-\mathrm{H}(\mathrm{N} 2 A) \cdots \mathrm{O}(1 A)\left(\frac{1}{2}-x, \frac{1}{2}+y,-z\right) \quad[\mathrm{N} \cdots \mathrm{O}\right.$ 3.068 (2), $\mathrm{H} \cdots \mathrm{O} 2 \cdot 14$ (2) $\AA, \mathrm{N}-\mathrm{H} \cdots \mathrm{O} 176$ (2) $\left.\left.{ }^{\circ}\right]\right\}$. The

Fig. 1. The thermal ellipsoids of the molecules (A) and (B) with atomic numbering. Ellipsoids of 50% probability are drawn for the non- H atoms; the H atoms attached to the N and O atoms are represented as spheres equivalent to $B=1.0 \AA^{2}$.

Fig. 2. Stereoscopic view of the crystal structure. The a axis points upwards, the b axis left to right and the c axis into the plane of the paper.
ribbons are stacked along c by van der Waals interactions to form a sheet, and the sheets are stacked along a.

The crystal structure of the complex is more similar to that of p-chlorocinnamamide, $P 2_{1} / c \quad(Z=4)$ (Rabinovich, 1969) than to that of cinnamamide, $P 2_{1} / a(Z=4)$ (Iwamoto, Kashino \& Haisa, 1989a). The period of a is close to $39.95 \AA$, the period of [203] of p-chlorocinnamamide, because in both crystals the hydrogen-bonded dimers extend nearly along these directions. The periods of \mathbf{b} of both crystals are also similar to each other, because of the formation of the hydrogen-bonded ribbons along \mathbf{b}. On the other hand, the period of \mathbf{c} is similar to those of \mathbf{b} of the β-type of cinnamic acid, $P 2_{1} / a(Z=4)$ (Schmidt, 1964) and p-chlorocinnamic acid, $P 2_{1} / a \quad(Z=4)$ (Glusker, Zacharias \& Carrell, 1975), and the nearest $\mathrm{C}=\mathrm{C}$ bonds are related by the c translation. The $\mathrm{C} \cdots \mathrm{C}$ distances between the $\mathrm{C}=\mathrm{C}$ bonds are $4.057(4) \AA$ for (A) and (B), the spacings between the planes through $\mathrm{C}(1), \mathrm{C}(7), \mathrm{C}(8)$ and $\mathrm{C}(9)$ involving the $\mathrm{C}=\mathrm{C}$ bonds being $3 \cdot 435(4) \AA$ for (A) and $3 \cdot 394$ (4) \AA for (B). Thus, the photoproducts may be a mixture of the β-photodimers of cinnamamide and cinnamic acid. The identification and crystallization of the products are in progress.

The authors thank the Research Center for Protein Engineering, Institute for Protein Research, Osaka University, for the use of their facilities.

References

Ashma, T. (1973). HBLS-V and DAPH. The Universal Crystallographic Computing System, Osaka. The Computation Center, Osaka Univ., Japan.
Fujir, S. (1979). MOLCON. The Universal Crystallographic Computing System, Osaka. The Computation Center, Osaka Univ., Japan.
Glusker, J. P., Zacharias, D. E. \& Carrell, H. L. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 68-74.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Iwamoto, T., Kashino, S. \& Haisa, M. (1989a). Acta. Cryst. C45, 1110-1112.
Iwamoto, T., Kashino, S. \& Haisa, M. (1989b). Acta. Cryst. C45, 1753-1758.
Johnson, C. K. (1971). ORTEP. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Nahringbauer, I. \& Larsson, G. (1969). Ark. Kemi, 30, 91-102.
Rabinovich, D. (1969). J. Chem. Soc. A, pp. 2361-2369.
Sarma, J. A. R. P. \& Desiraju, G. R. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1905-1912.
Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2014-2021.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters and bond lengths and angles involving H atoms have been desposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52498 (17 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

